- 1.1 Introduction to Data Science
- 1.2 Data Science Life Cycle
- 1.3 Applications of Data Science
- 2.1 Basic Concepts of Statistics
- 2.2 Probability Theory
- 2.3 Statistical Inference
- 3.1 Types of Data
- 3.2 Data Sources
- 3.3 Data Storage Technologies
- 4.1 Introduction to Python for Data Science
- 4.2 Introduction to R for Data Science
- 5.1 Data Imputation Techniques
- 5.2 Handling Outliers and Data Transformation
- 6.1 Introduction to EDA
- 6.2 Data Visualization
- 7.1 Introduction to Generative AI Tools
- 7.2 Applications of Generative AI
- 8.1 Introduction to Supervised Learning Algorithms
- 8.2 Introduction to Unsupervised Learning
- 8.3 Different Algorithms for Clustering
- 8.4 Association Rule Learning with Implementation
- 9.1 Ensemble Learning Techniques
- 9.2 Dimensionality Reduction
- 9.3 Advanced Optimization Techniques
- 10.1 Introduction to Data-Driven Decision Making
- 10.2 Open Source Tools for Data-Driven Decision Making
- 10.3 Deriving Data-Driven Insights from Sales Dataset
- 11.1 Understanding the Power of Data Storytelling
- 11.2 Identifying Use Cases and Business Relevance
- 11.3 Crafting Compelling Narratives
- 11.4 Visualizing Data for Impact
- 12.1 Project Introduction and Problem Statement
- 12.2 Data Collection and Preparation
- 12.3 Data Analysis and Modeling
- 12.4 Data Storytelling and Presentation
- 1. Understanding AI Agents
- 2. Case Studies
- 3. Hands-On Practice with AI Agents